Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
J Virol ; 96(18): e0102422, 2022 09 28.
Article in English | MEDLINE | ID: covidwho-2008764

ABSTRACT

Zoonotic coronaviruses represent an ongoing threat to public health. The classical porcine epidemic diarrhea virus (PEDV) first appeared in the early 1970s. Since 2010, outbreaks of highly virulent PEDV variants have caused great economic losses to the swine industry worldwide. However, the strategies by which PEDV variants escape host immune responses are not fully understood. Complement component 3 (C3) is considered a central component of the three complement activation pathways and plays a crucial role in preventing viral infection. In this study, we found that C3 significantly inhibited PEDV replication in vitro, and both variant and classical PEDV strains induced high levels of interleukin-1ß (IL-1ß) in Huh7 cells. However, the PEDV variant strain reduces C3 transcript and protein levels induced by IL-1ß compared with the PEDV classical strain. Examination of key molecules of the C3 transcriptional signaling pathway revealed that variant PEDV reduced C3 by inhibiting CCAAT/enhancer-binding protein ß (C/EBP-ß) phosphorylation. Mechanistically, PEDV nonstructural protein 1 (NSP1) inhibited C/EBP-ß phosphorylation via amino acid residue 50. Finally, we constructed recombinant PEDVs to verify the critical role of amino acid 50 of NSP1 in the regulation of C3 expression. In summary, we identified a novel antiviral role of C3 in inhibiting PEDV replication and the viral immune evasion strategies of PEDV variants. Our study reveals new information on PEDV-host interactions and furthers our understanding of the pathogenic mechanism of this virus. IMPORTANCE The complement system acts as a vital link between the innate and the adaptive immunity and has the ability to recognize and neutralize various pathogens. Activation of the complement system acts as a double-edged sword, as appropriate levels of activation protect against pathogenic infections, but excessive responses can provoke a dramatic inflammatory response and cause tissue damage, leading to pathological processes, which often appear in COVID-19 patients. However, how PEDV, as the most severe coronavirus causing diarrhea in piglets, regulates the complement system has not been previously reported. In this study, for the first time, we identified a novel mechanism of a PEDV variant in the suppression of C3 expression, showing that different coronaviruses and even different subtype strains differ in regulation of C3 expression. In addition, this study provides a deeper understanding of the mechanism of the PEDV variant in immune escape and enhanced virulence.


Subject(s)
Complement C3 , Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Viral Nonstructural Proteins , Virus Replication , Animals , Antiviral Agents , COVID-19/immunology , Cell Line, Tumor , Complement C3/immunology , Coronavirus Infections/immunology , Coronavirus Infections/virology , Humans , Interleukin-1beta/genetics , Interleukin-1beta/immunology , Swine , Swine Diseases/immunology , Swine Diseases/virology , Viral Nonstructural Proteins/metabolism , Virus Replication/physiology
2.
Med Sci (Paris) ; 38(6-7): 545-552, 2022.
Article in French | MEDLINE | ID: covidwho-1908318

ABSTRACT

NLRP3 is one of the best characterized innate immune cytosolic sensor. As part of the innate immune response, the NLRP3 inflammasome detects a wide range of danger signals such as pathogens, tissue damages, cellular stress. The priming and activation of NLRP3 lead to the formation of an oligomeric intracellular complex and to the recruitment and activation of caspase-1. Once activated, not only this inflammasome complex controls the processing and release of pro-inflammatory factors including IL-1ß and IL-18, but also the inflammatory cell death pyroptosis mediated by gasdermin D pores. In this review, we describe the role of the NLRP3 inflammasome activation in viral infections with a particular interest on SARS-CoV-2 infection. In addition, we present therapies evaluated or under evaluation targeting the NLRP3 inflammasome pathway as COVID-19 treatment.


Title: L'inflammasome NLRP3 dans la physiopathologie des infections virales - Un focus sur la COVID-19. Abstract: L'inflammasome NLRP3 est un complexe multiprotéique intracellulaire impliqué dans la réponse immunitaire innée. Après la détection de signaux de dangers, tels que ceux provenant d'agents pathogènes, ce complexe s'assemble afin d'initier la production et la sécrétion de molécules pro-inflammatoires, comme l'IL(interleukine)-1ß et l'IL-18. L'inflammasome NLRP3 régule aussi l'activation de la gasdermine D, une protéine impliquée dans la mort cellulaire inflammatoire, ou pyroptose. Cette revue s'intéresse à l'activation et aux rôles de l'inflammasome NLRP3 dans les infections virales et plus particulièrement dans le cas de l'infection par le SARS-CoV-2. Une attention particulière est portée dans cette revue aux traitements évalués, ou en cours d'évaluation, ciblant la voie de l'inflammasome NLRP3 activée au cours de la COVID-19.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , COVID-19/immunology , Humans , Inflammasomes/immunology , Inflammasomes/metabolism , Interleukin-1beta/immunology , Interleukin-1beta/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , SARS-CoV-2
3.
Int J Immunopathol Pharmacol ; 35: 20587384211059675, 2021.
Article in English | MEDLINE | ID: covidwho-1582485

ABSTRACT

INTRODUCTION: The fully-human monoclonal anti-interleukin (IL)-1ß antibody canakinumab may inhibit the production of inflammatory mediators in patients with coronavirus disease 2019 (COVID-19) and the hyperinflammatory response potentially leading to acute respiratory distress syndrome. OBJECTIVES: The goal of our retrospective, observational analysis was to evaluate the safety and efficacy of subcutaneous (s.c.) canakinumab in combination with our standard of care (SOC) treatment of selected patients with COVID-19 with respiratory failure and elevated reactive pro-inflammatory markers. METHODS: Eight participants received two doses of s.c. canakinumab 150 mg (or 2 mg/kg for participants weighing ≤40 kg) in addition to SOC. 12 patients received only SOC treatment. RESULTS: Canakinumab treatment reduced the need for mechanical ventilation and reduced proinflammatory markers, resulting in an amelioration of the final outcome, with respect to the control group who received SOC alone. The treatment was safe and well tolerated; no adverse events were reported. CONCLUSION: The use of canakinumab (300 mg, s.c.) in the early stage of COVID-19 with mild-to-moderate respiratory failure was superior to SOC at preventing clinical deterioration and may warrant further investigation as a treatment option for patients with COVID-19 who experience a hyperinflammatory response in the early stage of the disease.


Subject(s)
Antibodies, Monoclonal, Humanized , COVID-19 , Interleukin-1beta , Respiration, Artificial , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/immunology , Biomarkers/blood , COVID-19/complications , COVID-19/epidemiology , COVID-19/immunology , COVID-19/therapy , Dose-Response Relationship, Drug , Female , Humans , Inflammation Mediators/blood , Interleukin-1beta/antagonists & inhibitors , Interleukin-1beta/immunology , Italy/epidemiology , Male , Middle Aged , Monitoring, Immunologic/methods , Outcome and Process Assessment, Health Care , Patient Selection , Respiration, Artificial/methods , Respiration, Artificial/statistics & numerical data , Retrospective Studies , SARS-CoV-2 , Time-to-Treatment
4.
J Immunol Res ; 2021: 8214656, 2021.
Article in English | MEDLINE | ID: covidwho-1546598

ABSTRACT

Dengue fever is an infection by the dengue virus (DENV) transmitted by vector mosquitoes. It causes many infections in tropical and subtropical countries every year, thus posing a severe disease threat. Cytokine storms, one condition where many proinflammatory cytokines are mass-produced, might lead to cellular dysfunction in tissue/organ failures and often facilitate severe dengue disease in patients. Interleukin- (IL-) 18, similar to IL-1ß, is a proinflammatory cytokine produced during inflammation following inflammasome activation. Inflammatory stimuli, including microbial infections, damage signals, and cytokines, all induce the production of IL-18. High serum IL-18 is remarkably correlated with severely ill dengue patients; however, its possible roles have been less explored. Based on the clinical and basic findings, this review discusses the potential immunopathogenic role of IL-18 when it participates in DENV infection and dengue disease progression based on existing findings and related past studies.


Subject(s)
Dengue Virus/physiology , Dengue/immunology , Inflammasomes/metabolism , Inflammation/immunology , Interleukin-18/immunology , Aedes , Animals , Disease Vectors , Humans , Interleukin-1beta/immunology
5.
Eur Rev Med Pharmacol Sci ; 25(21): 6797-6812, 2021 11.
Article in English | MEDLINE | ID: covidwho-1524867

ABSTRACT

Cytokines in cardiac tissue plays a key role in progression of cardiometabolic diseases and cardiotoxicity induced by several anticancer drugs. Interleukin-1ß is one on the most studied regulator of cancer progression, survival and resistance to anticancer treatments. Recent findings indicate that interleukin1-ß exacerbates myocardial damages in cancer patients treated with chemotherapies and immune check-point inhibitors. Interleukin1-ß blocking agent canakinumab reduces major adverse cardiovascular events and cardiovascular death in recent cardiovascular trials. We focalized on the main biological functions of interleukin1-ß in cancer and cardiovascular diseases, summarizing the main clinical evidence available to date in literature. Especially in the era of SARS-CoV-2 infection, associated to coagulopathies, myocarditis and heart failure, cancer patients have an increased risk of cardiovascular complications compared to general population, therefore, the pharmacological inhibition of interleukin1-ß should be discussed and considered.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Antineoplastic Agents/adverse effects , COVID-19/complications , Cardiotoxicity/prevention & control , Interleukin-1beta/metabolism , Neoplasms/drug therapy , Anthracyclines/adverse effects , Anthracyclines/therapeutic use , Antibodies, Monoclonal, Humanized/immunology , Antineoplastic Agents/therapeutic use , COVID-19/virology , Cardiotoxicity/etiology , Cardiovascular Diseases/prevention & control , Humans , Interleukin-1beta/immunology , Neoplasms/complications , SARS-CoV-2/isolation & purification
6.
JCI Insight ; 6(24)2021 12 22.
Article in English | MEDLINE | ID: covidwho-1518198

ABSTRACT

A substantial proportion of patients who have recovered from coronavirus disease-2019 (COVID-19) experience COVID-19-related symptoms even months after hospital discharge. We extensively immunologically characterized patients who recovered from COVID-19. In these patients, T cells were exhausted, with increased PD-1+ T cells, as compared with healthy controls. Plasma levels of IL-1ß, IL-1RA, and IL-8, among others, were also increased in patients who recovered from COVID-19. This altered immunophenotype was mirrored by a reduced ex vivo T cell response to both nonspecific and specific stimulation, revealing a dysfunctional status of T cells, including a poor response to SARS-CoV-2 antigens. Altered levels of plasma soluble PD-L1, as well as of PD1 promoter methylation and PD1-targeting miR-15-5p, in CD8+ T cells were also observed, suggesting abnormal function of the PD-1/PD-L1 immune checkpoint axis. Notably, ex vivo blockade of PD-1 nearly normalized the aforementioned immunophenotype and restored T cell function, reverting the observed post-COVID-19 immune abnormalities; indeed, we also noted an increased T cell-mediated response to SARS-CoV-2 peptides. Finally, in a neutralization assay, PD-1 blockade did not alter the ability of T cells to neutralize SARS-CoV-2 spike pseudotyped lentivirus infection. Immune checkpoint blockade ameliorates post-COVID-19 immune abnormalities and stimulates an anti-SARS-CoV-2 immune response.


Subject(s)
COVID-19/complications , Cytokines/immunology , Immune Checkpoint Inhibitors/pharmacology , Programmed Cell Death 1 Receptor/immunology , SARS-CoV-2/immunology , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , B7-H1 Antigen/immunology , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Case-Control Studies , Cytokines/drug effects , DNA Methylation , Female , Humans , Immunophenotyping , In Vitro Techniques , Interleukin 1 Receptor Antagonist Protein/drug effects , Interleukin 1 Receptor Antagonist Protein/immunology , Interleukin-1beta/drug effects , Interleukin-1beta/immunology , Interleukin-8/drug effects , Interleukin-8/immunology , Male , MicroRNAs/metabolism , Middle Aged , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Promoter Regions, Genetic , Post-Acute COVID-19 Syndrome
7.
J Virol ; 96(2): e0106321, 2022 01 26.
Article in English | MEDLINE | ID: covidwho-1476388

ABSTRACT

COVID-19 affects multiple organs. Clinical data from the Mount Sinai Health System show that substantial numbers of COVID-19 patients without prior heart disease develop cardiac dysfunction. How COVID-19 patients develop cardiac disease is not known. We integrated cell biological and physiological analyses of human cardiomyocytes differentiated from human induced pluripotent stem cells (hiPSCs) infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the presence of interleukins (ILs) with clinical findings related to laboratory values in COVID-19 patients to identify plausible mechanisms of cardiac disease in COVID-19 patients. We infected hiPSC-derived cardiomyocytes from healthy human subjects with SARS-CoV-2 in the absence and presence of IL-6 and IL-1ß. Infection resulted in increased numbers of multinucleated cells. Interleukin treatment and infection resulted in disorganization of myofibrils, extracellular release of troponin I, and reduced and erratic beating. Infection resulted in decreased expression of mRNA encoding key proteins of the cardiomyocyte contractile apparatus. Although interleukins did not increase the extent of infection, they increased the contractile dysfunction associated with viral infection of cardiomyocytes, resulting in cessation of beating. Clinical data from hospitalized patients from the Mount Sinai Health System show that a significant portion of COVID-19 patients without history of heart disease have elevated troponin and interleukin levels. A substantial subset of these patients showed reduced left ventricular function by echocardiography. Our laboratory observations, combined with the clinical data, indicate that direct effects on cardiomyocytes by interleukins and SARS-CoV-2 infection might underlie heart disease in COVID-19 patients. IMPORTANCE SARS-CoV-2 infects multiple organs, including the heart. Analyses of hospitalized patients show that a substantial number without prior indication of heart disease or comorbidities show significant injury to heart tissue, assessed by increased levels of troponin in blood. We studied the cell biological and physiological effects of virus infection of healthy human iPSC-derived cardiomyocytes in culture. Virus infection with interleukins disorganizes myofibrils, increases cell size and the numbers of multinucleated cells, and suppresses the expression of proteins of the contractile apparatus. Viral infection of cardiomyocytes in culture triggers release of troponin similar to elevation in levels of COVID-19 patients with heart disease. Viral infection in the presence of interleukins slows down and desynchronizes the beating of cardiomyocytes in culture. The cell-level physiological changes are similar to decreases in left ventricular ejection seen in imaging of patients' hearts. These observations suggest that direct injury to heart tissue by virus can be one underlying cause of heart disease in COVID-19.


Subject(s)
COVID-19/immunology , Induced Pluripotent Stem Cells , Interleukin-10/immunology , Interleukin-1beta/immunology , Interleukin-6/immunology , Myocytes, Cardiac , Cells, Cultured , Humans , Induced Pluripotent Stem Cells/immunology , Induced Pluripotent Stem Cells/pathology , Induced Pluripotent Stem Cells/virology , Myocytes, Cardiac/immunology , Myocytes, Cardiac/pathology , Myocytes, Cardiac/virology
8.
Viruses ; 13(10)2021 10 15.
Article in English | MEDLINE | ID: covidwho-1470996

ABSTRACT

Infections with viral pathogens are widespread and can cause a variety of different diseases. In-depth knowledge about viral triggers initiating an immune response is necessary to decipher viral pathogenesis. Inflammasomes, as part of the innate immune system, can be activated by viral pathogens. However, viral structural components responsible for inflammasome activation remain largely unknown. Here we analyzed glycoproteins derived from SARS-CoV-1/2, HCMV and HCV, required for viral entry and fusion, as potential triggers of NLRP3 inflammasome activation and pyroptosis in THP-1 macrophages. All tested glycoproteins were able to potently induce NLRP3 inflammasome activation, indicated by ASC-SPECK formation and secretion of cleaved IL-1ß. Lytic cell death via gasdermin D (GSDMD), pore formation, and pyroptosis are required for IL-1ß release. As a hallmark of pyroptosis, we were able to detect cleavage of GSDMD and, correspondingly, cell death in THP-1 macrophages. CRISPR-Cas9 knockout of NLRP3 and GSDMD in THP-1 macrophages confirmed and strongly support the evidence that viral glycoproteins can act as innate immunity triggers. With our study, we decipher key mechanisms of viral pathogenesis by showing that viral glycoproteins potently induce innate immune responses. These insights could be beneficial in vaccine development and provide new impulses for the investigation of vaccine-induced innate immunity.


Subject(s)
Immunity, Innate/immunology , Inflammasomes/immunology , Macrophages/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Viral Envelope Proteins/immunology , Viral Fusion Proteins/immunology , Cell Line, Tumor , Cytomegalovirus/immunology , Hepacivirus/immunology , Humans , Interleukin-1beta/biosynthesis , Interleukin-1beta/immunology , Pyroptosis/immunology , Severe acute respiratory syndrome-related coronavirus/immunology , SARS-CoV-2/immunology , THP-1 Cells
9.
J Leukoc Biol ; 111(3): 725-734, 2022 03.
Article in English | MEDLINE | ID: covidwho-1380391

ABSTRACT

Following on from the devastating spread of COVID-19, a major global priority has been the production, procurement, and distribution of effective vaccines to ensure that the global pandemic reaches an end. However, concerns were raised about worrying side effects, particularly the occurrence of thrombosis and thrombocytopenia after administration of the Oxford/AstraZeneca and Johnson & Johnson's Janssen COVID-19 vaccine, in a phenomenon being termed vaccine-induced thrombotic thrombocytopenia (VITT). Similar to heparin-induced thrombocytopenia (HIT), this condition has been associated with the development of anti-platelet factor 4 antibodies, purportedly leading to neutrophil-platelet aggregate formation. Although thrombosis has also been a common association with COVID-19, the precise molecular mechanisms governing its occurrence are yet to be established. Recently, increasing evidence highlights the NLRP3 (NOD-like, leucine-rich repeat domains, and pyrin domain-containing protein) inflammasome complex along with IL-1ß and effete neutrophils producing neutrophil extracellular traps (NETs) through NETosis. Herein, we propose and discuss that perhaps the incidence of VITT may be due to inflammatory reactions mediated via IL-1ß/NLRP3 inflammasome activation and consequent overproduction of NETs, where similar autoimmune mechanisms are observed in HIT. We also discuss avenues by which such modalities could be treated to prevent the occurrence of adverse events and ensure vaccine rollouts remain safe and on target to end the current pandemic.


Subject(s)
COVID-19 Vaccines/adverse effects , COVID-19/prevention & control , Extracellular Traps/immunology , Thrombocytopenia/etiology , Animals , COVID-19/immunology , COVID-19 Vaccines/therapeutic use , Humans , Inflammasomes/immunology , Interleukin-1beta/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Thrombocytopenia/immunology , Thrombocytopenia/prevention & control , Thrombocytopenia/therapy
10.
EMBO J ; 40(18): e108249, 2021 09 15.
Article in English | MEDLINE | ID: covidwho-1323479

ABSTRACT

SARS-CoV-2 is an emerging coronavirus that causes dysfunctions in multiple human cells and tissues. Studies have looked at the entry of SARS-CoV-2 into host cells mediated by the viral spike protein and human receptor ACE2. However, less is known about the cellular immune responses triggered by SARS-CoV-2 viral proteins. Here, we show that the nucleocapsid of SARS-CoV-2 inhibits host pyroptosis by blocking Gasdermin D (GSDMD) cleavage. SARS-CoV-2-infected monocytes show enhanced cellular interleukin-1ß (IL-1ß) expression, but reduced IL-1ß secretion. While SARS-CoV-2 infection promotes activation of the NLRP3 inflammasome and caspase-1, GSDMD cleavage and pyroptosis are inhibited in infected human monocytes. SARS-CoV-2 nucleocapsid protein associates with GSDMD in cells and inhibits GSDMD cleavage in vitro and in vivo. The nucleocapsid binds the GSDMD linker region and hinders GSDMD processing by caspase-1. These insights into how SARS-CoV-2 antagonizes cellular inflammatory responses may open new avenues for treating COVID-19 in the future.


Subject(s)
COVID-19/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Nucleocapsid/metabolism , Phosphate-Binding Proteins/metabolism , Pyroptosis/physiology , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/immunology , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , Caspase 1/immunology , Caspase 1/metabolism , HEK293 Cells , Host-Pathogen Interactions , Humans , Inflammasomes/immunology , Inflammasomes/metabolism , Interleukin-1beta/immunology , Interleukin-1beta/metabolism , Intracellular Signaling Peptides and Proteins/immunology , Mice , Monocytes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Phosphate-Binding Proteins/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , THP-1 Cells
11.
Viruses ; 13(5)2021 05 11.
Article in English | MEDLINE | ID: covidwho-1224260

ABSTRACT

The role of the adaptive microenvironment components in severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2) infection is widely researched, but remains unclear. Studying the common dynamics of adaptive immune response changes can help understand the pathogenesis of coronavirus disease 2019 (COVID-19), especially in critical patients. The aim of the present study was to determine the cytokines concentration and leukocyte subpopulations profiles in the severe COVID-19 (n = 23) and critical (n = 18) COVID-19 group distinguished by the computed tomography (CT) severity score. We observed lower percentage of lymphocyte subpopulation, higher neutrophils to lymphocytes ratio (NLR) and higher IL-6 concentration in critical COVID-19 group than in severe group. CT severity score was negative correlated with proportion of lymphocytes, lymphocytes T, CD4+ cells, Treg cells and NK cells and positive correlated with neutrophils, NLR, and IL-6. In critical group more correlations between cytokines and lymphocytes were observed, mainly between TNF-α, IL-1ß and lymphocyte subpopulations. The collective assessment of the cytokine profile, leukocyte subpopulations and the CT severity score can help to characterize and differentiate patient in advanced COVID-19 than the study of single parameters. We have shown that the interconnection of elements of the adaptive microenvironment can play an important role in critical COVID-19 cases.


Subject(s)
COVID-19/immunology , Cytokines/analysis , Leukocytes/cytology , Adult , Aged , COVID-19/metabolism , Cytokines/immunology , Female , Humans , Interleukin-1beta/immunology , Killer Cells, Natural/immunology , Leukocyte Count , Lymphocyte Count , Male , Middle Aged , Neutrophils/immunology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Severity of Illness Index , T-Lymphocytes, Regulatory/immunology , Tomography, X-Ray Computed , Tumor Necrosis Factor-alpha/immunology
12.
Nat Immunol ; 22(3): 322-335, 2021 03.
Article in English | MEDLINE | ID: covidwho-1060966

ABSTRACT

Immune system dysfunction is paramount in coronavirus disease 2019 (COVID-19) severity and fatality rate. Mucosal-associated invariant T (MAIT) cells are innate-like T cells involved in mucosal immunity and protection against viral infections. Here, we studied the immune cell landscape, with emphasis on MAIT cells, in cohorts totaling 208 patients with various stages of disease. MAIT cell frequency is strongly reduced in blood. They display a strong activated and cytotoxic phenotype that is more pronounced in lungs. Blood MAIT cell alterations positively correlate with the activation of other innate cells, proinflammatory cytokines, notably interleukin (IL)-18, and with the severity and mortality of severe acute respiratory syndrome coronavirus 2 infection. We also identified a monocyte/macrophage interferon (IFN)-α-IL-18 cytokine shift and the ability of infected macrophages to induce the cytotoxicity of MAIT cells in an MR1-dependent manner. Together, our results suggest that altered MAIT cell functions due to IFN-α-IL-18 imbalance contribute to disease severity, and their therapeutic manipulation may prevent deleterious inflammation in COVID-19 aggravation.


Subject(s)
COVID-19/immunology , Interferon-alpha/immunology , Interleukin-18/immunology , Macrophages/immunology , Monocytes/immunology , Mucosal-Associated Invariant T Cells/immunology , Adult , Aged , Aged, 80 and over , Animals , Bronchoalveolar Lavage , Case-Control Studies , Chlorocebus aethiops , Cohort Studies , Female , France , Humans , Immunophenotyping , Interleukin-10/immunology , Interleukin-15/immunology , Interleukin-1beta/immunology , Interleukin-6/immunology , Interleukin-8/immunology , Male , Middle Aged , RNA-Seq , SARS-CoV-2 , Severity of Illness Index , Single-Cell Analysis , Vero Cells , Young Adult
13.
Eur Rev Med Pharmacol Sci ; 24(23): 12536-12544, 2020 12.
Article in English | MEDLINE | ID: covidwho-995014

ABSTRACT

OBJECTIVE: We aimed to study the dynamics of cytokines and lymphocyte subsets and their correlation with the prognosis of patients with severe COVID-19. PATIENTS AND METHODS: The lymphocyte subsets and cytokines of 31 patients with severe COVID-19 (7 deaths and 24 survivals) were longitudinally analyzed. RESULTS: The mean age of enrolled patients was 64 years, 24 (77.4%) patients were men, and 23 (74.2%) patients had comorbidities. Compared with survival group, the death group showed significant and sustained increases in the levels of IL-6, IL-8, and IL-10 from baseline to 28 days after admission (all p<0.05). No significant differences were observed in the levels of TNF-α, IL-1b, IL-2, IL-4, IL-5, IL-12P70, IL-17, IFN-α, and IFN-γ between the death group and survival group during the follow-up (all p>0.05). The absolute counts of CD3+ T cells, CD4+ T cells, CD8+ T cells, and CD45+ T cells were lower in both survival group and death group patients from hospital admission to 3 days after admission, and gradually recovered in 4 to 35 days in the survival group, but continually stayed at low levels in the death group during the follow-up. CONCLUSIONS: The kinetic changes of cytokines and lymphocyte subsets are related with the prognosis of patients with severe COVID-19.


Subject(s)
COVID-19/immunology , Cytokines/immunology , T-Lymphocyte Subsets/immunology , Aged , Aged, 80 and over , CD4 Lymphocyte Count , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/blood , COVID-19/mortality , COVID-19/therapy , Female , Humans , Interferon-alpha/immunology , Interleukin-10/immunology , Interleukin-12/immunology , Interleukin-17/immunology , Interleukin-1beta/immunology , Interleukin-2/immunology , Interleukin-4/immunology , Interleukin-5/immunology , Interleukin-6/immunology , Interleukin-8/immunology , Leukocyte Common Antigens/immunology , Longitudinal Studies , Lymphocyte Count , Male , Middle Aged , Prognosis , SARS-CoV-2 , Severity of Illness Index , Tumor Necrosis Factor-alpha/immunology
14.
Sci Rep ; 10(1): 21415, 2020 12 08.
Article in English | MEDLINE | ID: covidwho-970024

ABSTRACT

The COVID-19 pandemic resulting from the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which emerged in December 2019 in Wuhan in China has placed immense burden on national economies and global health. At present neither vaccination nor therapies are available. Here, we performed a meta-analysis of RNA-sequencing data from three studies employing human lung epithelial cells. Of these one focused on lung epithelial cells infected with SARS-CoV-2. We aimed at identifying genes co-expressed with angiotensin I converting enzyme 2 (ACE2) the human cell entry receptor of SARS-CoV-2, and unveiled several genes correlated or inversely correlated with high significance, among the most significant of these was the transmembrane serine protease 4 (TMPRSS4). Serine proteases are known to be involved in the infection process by priming the virus spike protein. Pathway analysis revealed virus infection amongst the most significantly correlated pathways. Gene Ontologies revealed regulation of viral life cycle, immune responses, pro-inflammatory responses- several interleukins such as IL6, IL1, IL20 and IL33, IFI16 regulating the interferon response to a virus, chemo-attraction of macrophages, and cellular stress resulting from activated Reactive Oxygen Species. We believe that this dataset will aid in a better understanding of the molecular mechanism(s) underlying COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Epithelial Cells/metabolism , Membrane Proteins/metabolism , Respiratory Mucosa/metabolism , SARS-CoV-2/metabolism , Serine Endopeptidases/metabolism , Angiotensin-Converting Enzyme 2/genetics , COVID-19/pathology , Computational Biology , Humans , Interleukin-1beta/immunology , Interleukin-33/immunology , Interleukin-6/immunology , Interleukins/immunology , Lung/cytology , Membrane Proteins/genetics , Nuclear Proteins/immunology , Phosphoproteins/immunology , Reactive Oxygen Species/metabolism , Receptors, Virus/genetics , Receptors, Virus/metabolism , Respiratory Mucosa/cytology , Serine Endopeptidases/genetics , Transcriptome/genetics
15.
Signal Transduct Target Ther ; 5(1): 235, 2020 10 09.
Article in English | MEDLINE | ID: covidwho-841900

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can lead to respiratory illness and multi-organ failure in critically ill patients. Although the virus-induced lung damage and inflammatory cytokine storm are believed to be directly associated with coronavirus disease 2019 (COVID-19) clinical manifestations, the underlying mechanisms of virus-triggered inflammatory responses are currently unknown. Here we report that SARS-CoV-2 infection activates caspase-8 to trigger cell apoptosis and inflammatory cytokine processing in the lung epithelial cells. The processed inflammatory cytokines are released through the virus-induced necroptosis pathway. Virus-induced apoptosis, necroptosis, and inflammation activation were also observed in the lung sections of SARS-CoV-2-infected HFH4-hACE2 transgenic mouse model, a valid model for studying SARS-CoV-2 pathogenesis. Furthermore, analysis of the postmortem lung sections of fatal COVID-19 patients revealed not only apoptosis and necroptosis but also massive inflammatory cell infiltration, necrotic cell debris, and pulmonary interstitial fibrosis, typical of immune pathogenesis in the lung. The SARS-CoV-2 infection triggered a dual mode of cell death pathways and caspase-8-dependent inflammatory responses may lead to the lung damage in the COVID-19 patients. These discoveries might assist the development of therapeutic strategies to treat COVID-19.


Subject(s)
Apoptosis/immunology , Betacoronavirus/pathogenicity , Caspase 8/immunology , Coronavirus Infections/immunology , Cytokine Release Syndrome/immunology , Necroptosis/immunology , Pneumonia, Viral/immunology , Pulmonary Fibrosis/immunology , Animals , COVID-19 , Caspase 8/genetics , Cell Line, Tumor , Chemokine CCL5/genetics , Chemokine CCL5/immunology , Chemokine CXCL10/genetics , Chemokine CXCL10/immunology , Coronavirus Infections/genetics , Coronavirus Infections/pathology , Coronavirus Infections/virology , Cytokine Release Syndrome/genetics , Cytokine Release Syndrome/pathology , Cytokine Release Syndrome/virology , Disease Models, Animal , Epithelial Cells/immunology , Epithelial Cells/pathology , Epithelial Cells/virology , Gene Expression Regulation , Humans , Interleukin-1beta/genetics , Interleukin-1beta/immunology , Interleukin-7/genetics , Interleukin-7/immunology , Interleukin-8/genetics , Interleukin-8/immunology , Lung/immunology , Lung/pathology , Lung/virology , Mice , Mice, Transgenic , Pandemics , Pneumonia, Viral/genetics , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/virology , SARS-CoV-2 , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology
16.
Signal Transduct Target Ther ; 5(1): 186, 2020 09 03.
Article in English | MEDLINE | ID: covidwho-744366

ABSTRACT

Sterol regulatory element binding protein-2 (SREBP-2) is activated by cytokines or pathogen, such as virus or bacteria, but its association with diminished cholesterol levels in COVID-19 patients is unknown. Here, we evaluated SREBP-2 activation in peripheral blood mononuclear cells of COVID-19 patients and verified the function of SREBP-2 in COVID-19. Intriguingly, we report the first observation of SREBP-2 C-terminal fragment in COVID-19 patients' blood and propose SREBP-2 C-terminal fragment as an indicator for determining severity. We confirmed that SREBP-2-induced cholesterol biosynthesis was suppressed by Sestrin-1 and PCSK9 expression, while the SREBP-2-induced inflammatory responses was upregulated in COVID-19 ICU patients. Using an infectious disease mouse model, inhibitors of SREBP-2 and NF-κB suppressed cytokine storms caused by viral infection and prevented pulmonary damages. These results collectively suggest that SREBP-2 can serve as an indicator for severity diagnosis and therapeutic target for preventing cytokine storm and lung damage in severe COVID-19 patients.


Subject(s)
Betacoronavirus/pathogenicity , Cholesterol/biosynthesis , Coronavirus Infections/genetics , Cytokine Release Syndrome/genetics , Host-Pathogen Interactions/genetics , Leukocytes, Mononuclear/immunology , Pneumonia, Viral/genetics , Sterol Regulatory Element Binding Protein 2/genetics , Betacoronavirus/immunology , COVID-19 , Case-Control Studies , Coronavirus Infections/immunology , Coronavirus Infections/mortality , Coronavirus Infections/virology , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/mortality , Cytokine Release Syndrome/virology , Gene Expression Regulation , Heat-Shock Proteins/genetics , Heat-Shock Proteins/immunology , Host-Pathogen Interactions/immunology , Humans , Intensive Care Units , Interleukin-1beta/genetics , Interleukin-1beta/immunology , L-Lactate Dehydrogenase/genetics , L-Lactate Dehydrogenase/immunology , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/virology , Lung/immunology , Lung/metabolism , Lung/virology , NF-kappa B/genetics , NF-kappa B/immunology , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/mortality , Pneumonia, Viral/virology , Primary Cell Culture , Proprotein Convertase 9/genetics , Proprotein Convertase 9/immunology , SARS-CoV-2 , Signal Transduction , Sterol Regulatory Element Binding Protein 2/immunology , Survival Analysis , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology
17.
Nat Med ; 26(10): 1636-1643, 2020 10.
Article in English | MEDLINE | ID: covidwho-728994

ABSTRACT

Several studies have revealed that the hyper-inflammatory response induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a major cause of disease severity and death. However, predictive biomarkers of pathogenic inflammation to help guide targetable immune pathways are critically lacking. We implemented a rapid multiplex cytokine assay to measure serum interleukin (IL)-6, IL-8, tumor necrosis factor (TNF)-α and IL-1ß in hospitalized patients with coronavirus disease 2019 (COVID-19) upon admission to the Mount Sinai Health System in New York. Patients (n = 1,484) were followed up to 41 d after admission (median, 8 d), and clinical information, laboratory test results and patient outcomes were collected. We found that high serum IL-6, IL-8 and TNF-α levels at the time of hospitalization were strong and independent predictors of patient survival (P < 0.0001, P = 0.0205 and P = 0.0140, respectively). Notably, when adjusting for disease severity, common laboratory inflammation markers, hypoxia and other vitals, demographics, and a range of comorbidities, IL-6 and TNF-α serum levels remained independent and significant predictors of disease severity and death. These findings were validated in a second cohort of patients (n = 231). We propose that serum IL-6 and TNF-α levels should be considered in the management and treatment of patients with COVID-19 to stratify prospective clinical trials, guide resource allocation and inform therapeutic options.


Subject(s)
Coronavirus Infections/immunology , Interleukin-1beta/immunology , Interleukin-6/immunology , Interleukin-8/immunology , Pneumonia, Viral/immunology , Tumor Necrosis Factor-alpha/immunology , Aged , Betacoronavirus , COVID-19 , Coronavirus Infections/mortality , Coronavirus Infections/physiopathology , Coronavirus Infections/therapy , Cytokines/immunology , Female , Hospitalization , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/mortality , Pneumonia, Viral/physiopathology , Pneumonia, Viral/therapy , SARS-CoV-2 , Severity of Illness Index , Survival Rate
18.
JCI Insight ; 5(17)2020 09 03.
Article in English | MEDLINE | ID: covidwho-676865

ABSTRACT

BACKGROUNDElevated levels of inflammatory cytokines have been associated with poor outcomes among COVID-19 patients. It is unknown, however, how these levels compare with those observed in critically ill patients with acute respiratory distress syndrome (ARDS) or sepsis due to other causes.METHODSWe used a Luminex assay to determine expression of 76 cytokines from plasma of hospitalized COVID-19 patients and banked plasma samples from ARDS and sepsis patients. Our analysis focused on detecting statistical differences in levels of 6 cytokines associated with cytokine storm (IL-1ß, IL-1RA, IL-6, IL-8, IL-18, and TNF-α) between patients with moderate COVID-19, severe COVID-19, and ARDS or sepsis.RESULTSFifteen hospitalized COVID-19 patients, 9 of whom were critically ill, were compared with critically ill patients with ARDS (n = 12) or sepsis (n = 16). There were no statistically significant differences in baseline levels of IL-1ß, IL-1RA, IL-6, IL-8, IL-18, and TNF-α between patients with COVID-19 and critically ill controls with ARDS or sepsis.CONCLUSIONLevels of inflammatory cytokines were not higher in severe COVID-19 patients than in moderate COVID-19 or critically ill patients with ARDS or sepsis in this small cohort. Broad use of immunosuppressive therapies in ARDS has failed in numerous Phase 3 studies; use of these therapies in unselected patients with COVID-19 may be unwarranted.FUNDINGFunding was received from NHLBI K23 HL125663 (AJR); The Bill and Melinda Gates Foundation OPP1113682 (AJR and CAB); Burroughs Wellcome Fund Investigators in the Pathogenesis of Infectious Diseases #1016687 NIH/NIAID U19AI057229-16; Stanford Maternal Child Health Research Institute; and Chan Zuckerberg Biohub (CAB).


Subject(s)
Coronavirus Infections/immunology , Cytokine Release Syndrome/immunology , Cytokines/immunology , Pneumonia, Viral/immunology , Respiratory Distress Syndrome/immunology , Sepsis/immunology , Adult , Aged , COVID-19 , Case-Control Studies , Coronavirus Infections/blood , Cytokine Release Syndrome/blood , Cytokines/blood , Female , Humans , Interleukin 1 Receptor Antagonist Protein/blood , Interleukin 1 Receptor Antagonist Protein/immunology , Interleukin-18/blood , Interleukin-18/immunology , Interleukin-1beta/blood , Interleukin-1beta/immunology , Interleukin-6/blood , Interleukin-6/immunology , Interleukin-8/blood , Interleukin-8/immunology , Male , Middle Aged , Pandemics , Pneumonia, Viral/blood , Respiratory Distress Syndrome/blood , Sepsis/blood , Severity of Illness Index , Tumor Necrosis Factor-alpha/blood , Tumor Necrosis Factor-alpha/immunology
19.
Am J Respir Crit Care Med ; 202(6): 812-821, 2020 09 15.
Article in English | MEDLINE | ID: covidwho-614625

ABSTRACT

Rationale: Coronavirus disease (COVID-19) is a global threat to health. Its inflammatory characteristics are incompletely understood.Objectives: To define the cytokine profile of COVID-19 and to identify evidence of immunometabolic alterations in those with severe illness.Methods: Levels of IL-1ß, IL-6, IL-8, IL-10, and sTNFR1 (soluble tumor necrosis factor receptor 1) were assessed in plasma from healthy volunteers, hospitalized but stable patients with COVID-19 (COVIDstable patients), patients with COVID-19 requiring ICU admission (COVIDICU patients), and patients with severe community-acquired pneumonia requiring ICU support (CAPICU patients). Immunometabolic markers were measured in circulating neutrophils from patients with severe COVID-19. The acute phase response of AAT (alpha-1 antitrypsin) to COVID-19 was also evaluated.Measurements and Main Results: IL-1ß, IL-6, IL-8, and sTNFR1 were all increased in patients with COVID-19. COVIDICU patients could be clearly differentiated from COVIDstable patients, and demonstrated higher levels of IL-1ß, IL-6, and sTNFR1 but lower IL-10 than CAPICU patients. COVID-19 neutrophils displayed altered immunometabolism, with increased cytosolic PKM2 (pyruvate kinase M2), phosphorylated PKM2, HIF-1α (hypoxia-inducible factor-1α), and lactate. The production and sialylation of AAT increased in COVID-19, but this antiinflammatory response was overwhelmed in severe illness, with the IL-6:AAT ratio markedly higher in patients requiring ICU admission (P < 0.0001). In critically unwell patients with COVID-19, increases in IL-6:AAT predicted prolonged ICU stay and mortality, whereas improvement in IL-6:AAT was associated with clinical resolution (P < 0.0001).Conclusions: The COVID-19 cytokinemia is distinct from that of other types of pneumonia, leading to organ failure and ICU need. Neutrophils undergo immunometabolic reprogramming in severe COVID-19 illness. Cytokine ratios may predict outcomes in this population.


Subject(s)
Acute-Phase Reaction/immunology , Carrier Proteins/metabolism , Coronavirus Infections/immunology , Coronavirus Infections/metabolism , Cytokines/immunology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Lactic Acid/metabolism , Membrane Proteins/metabolism , Pneumonia, Viral/immunology , Pneumonia, Viral/metabolism , Thyroid Hormones/metabolism , alpha 1-Antitrypsin/immunology , Acute-Phase Reaction/metabolism , Adult , Aged , Betacoronavirus , Blotting, Western , COVID-19 , Case-Control Studies , Community-Acquired Infections/immunology , Community-Acquired Infections/metabolism , Coronavirus Infections/mortality , Coronavirus Infections/physiopathology , Critical Illness , Electrophoresis, Polyacrylamide Gel , Enzyme-Linked Immunosorbent Assay , Female , Hospitalization , Humans , Intensive Care Units , Interleukin-10/immunology , Interleukin-1beta/immunology , Interleukin-6/immunology , Interleukin-8/immunology , Length of Stay , Male , Middle Aged , Neutrophils/immunology , Neutrophils/metabolism , Pandemics , Phosphorylation , Pneumonia/immunology , Pneumonia/metabolism , Pneumonia, Viral/mortality , Pneumonia, Viral/physiopathology , Receptors, Tumor Necrosis Factor, Type I/immunology , SARS-CoV-2 , Severity of Illness Index , alpha 1-Antitrypsin/metabolism
20.
Nat Rev Rheumatol ; 16(8): 465-470, 2020 08.
Article in English | MEDLINE | ID: covidwho-606957

ABSTRACT

Coronavirus disease 2019 (COVID-19) is an infectious disease, caused by severe acute respiratory syndrome coronavirus 2, which predominantly affects the lungs and, under certain circumstances, leads to an excessive or uncontrolled immune activation and cytokine response in alveolar structures. The pattern of pro-inflammatory cytokines induced in COVID-19 has similarities to those targeted in the treatment of rheumatoid arthritis. Several clinical studies are underway that test the effects of inhibiting IL-6, IL-1ß or TNF or targeting cytokine signalling via Janus kinase inhibition in the treatment of COVID-19. Despite these similarities, COVID-19 and other zoonotic coronavirus-mediated diseases do not induce clinical arthritis, suggesting that a local inflammatory niche develops in alveolar structures and drives the disease process. COVID-19 constitutes a challenge for patients with inflammatory arthritis for several reasons, in particular, the safety of immune interventions during the pandemic. Preliminary data, however, do not suggest that patients with inflammatory arthritis are at increased risk of COVID-19.


Subject(s)
Arthritis, Rheumatoid/immunology , Coronavirus Infections/immunology , Cytokine Release Syndrome/immunology , Pneumonia, Viral/immunology , Pulmonary Alveoli/immunology , Antibodies, Monoclonal, Humanized/therapeutic use , Antirheumatic Agents/therapeutic use , Arthralgia , Arthritis, Rheumatoid/drug therapy , Azetidines/therapeutic use , Betacoronavirus , COVID-19 , Coronavirus Infections/complications , Coronavirus Infections/drug therapy , Delivery of Health Care , Interleukin 1 Receptor Antagonist Protein/therapeutic use , Interleukin-1beta/immunology , Interleukin-6/immunology , Janus Kinase Inhibitors/therapeutic use , Myalgia , Pandemics , Pneumonia, Viral/complications , Pneumonia, Viral/drug therapy , Purines , Pyrazoles , Rheumatology , SARS-CoV-2 , Sulfonamides/therapeutic use , Tumor Necrosis Factor Inhibitors/therapeutic use , Tumor Necrosis Factor-alpha/immunology , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL